Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography.
نویسندگان
چکیده
Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction procedure have a long history, there is less direct evidence on the optimal regularization methods, or exploring a common theoretical framework for techniques which uses least-squares (LS) minimization. A generalized least-squares (GLS) method is discussed here, which takes into account the variances and covariances among the individual data points and optical properties in the image into a structured weight matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as special cases of this more generalized LS approach. The performance of three minimization techniques using the same implementation scheme is compared using test problems with increasing noise level and increasing complexity within the imaging field. Techniques that use spatial-prior information as constraints can be also incorporated into the GLS formalism. It is also illustrated that inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of GLS minimization is even more apparent when the noise level in the data is high (as high as 10%), indicating that the benefits of this approach are important for reconstruction of data in a routine setting where the data variance can be known based upon the signal to noise properties of the instruments.
منابع مشابه
A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
متن کاملMinimal residual method provides optimal regularization parameter for diffuse optical tomography.
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience...
متن کاملIncoherence-based optimal selection of independent measurements in diffuse optical tomography.
An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for...
متن کاملRegularized total least squares approach for nonconvolutional linear inverse problems
In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modifying the RQ function to enforce a smooth solution. A conjugate gradient algorithm is used to min...
متن کاملEvaluation of the Regularization Algorithm to Decorrelation of Covariance Matrix of Float Ambiguity in Fast Resolution of GPS Ambiguity Parameters
Precise positioning in Real Time Kinematic (RTK) applications depends on the accurate resolution of the phase ambiguities. In RTK positioning, ambiguity parameters are highly correlated, especially when the positioning rate is high. Consequently, application of de-correlation techniques for the accurate resolution of ambiguities is inevitable. Phase ambiguity as positioning observations by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2007